Detecting Markov random fields hidden in white noise

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Markov Random Fields Hidden in White Noise

Motivated by change point problems in time series and the detection of textured objects in images, we consider the problem of detecting a piece of a Gaussian Markov random field hidden in white Gaussian noise. We derive minimax lower bounds and propose near-optimal tests.

متن کامل

Hidden Markov Random Fields

A noninvertible function of a first order Markov process, or of a nearestneighbor Markov random field, is called a hidden Markov model. Hidden Markov models are generally not Markovian. In fact, they may have complex and long range interactions, which is largely the reason for their utility. Applications include signal and image processing, speech recognition, and biological modeling. We show t...

متن کامل

Learning Heterogeneous Hidden Markov Random Fields

Hidden Markov random fields (HMRFs) are conventionally assumed to be homogeneous in the sense that the potential functions are invariant across different sites. However in some biological applications, it is desirable to make HMRFs heterogeneous, especially when there exists some background knowledge about how the potential functions vary. We formally define heterogeneous HMRFs and propose an E...

متن کامل

Defect Detection Using Hidden Markov Random Fields

We derive an approximate maximum a posteriori (MAP) method for detecting NDE defect signals using hidden Markov random fields (HMRFs). In the proposed HMRF framework, a set of spatially distributed NDE measurements is assumed to form a noisy realization of an underlying random field that has a simple structure with Markovian dependence. Here, the random field describes the defect signals to be ...

متن کامل

Approximating Hidden Gaussian Markov Random Fields

This paper discusses how to construct approximations to a unimodal hidden Gaussian Markov random field on a graph of dimensionnwhen the likelihood consists of mutually independent data. We demonstrate that a class of non-Gaussian approximations can be constructed for a wide range of likelihood models. They have the appealing properties that exact samples can be drawn from them, the normalisatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2018

ISSN: 1350-7265

DOI: 10.3150/17-bej973